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Abstract 
 

Background Robust molecular subtyping of triple-negative breast cancer (TNBC) is a prerequisite for the success 

of precision medicine. Today, there is a clear consensus on three TNBC molecular subtypes: luminal androgen 

receptor (LAR), basal-like immune-activated (BLIA) and basal-like immune-suppressed (BLIS). However, the 

debate about the robustness of other subtypes is still open. 

Methods An unprecedented number (n = 1942) of TNBC patient data was collected. Microarray- and RNAseq-

based cohorts were independently investigated. Unsupervised analyses were conducted using k-means 

consensus clustering. Clusters of patients were then functionally annotated using different approaches. 

Prediction of response to chemo- and targeted therapies, immune checkpoint blockade and radiotherapy were 

also screened for each TNBC subtype.  

Results Four TNBC subtypes were identified in the cohort: LAR (19.36%); mesenchymal stem-like (MSL/MES) 

(17.35%); BLIA (31.06%); and BLIS (32.23%). Regarding the MSL/MES subtype, we suggest renaming it to 

mesenchymal-like immune-altered (MLIA) to emphasize its specific histological background and nature of 

immune response. Treatment response prediction results show, among other things, that despite immune 

activation, immune checkpoint blockade is probably less or completely ineffective in MLIA, possibly caused by 

mesenchymal background and/or an enrichment in dysfunctional cytotoxic T lymphocytes. TNBC subtyping 

results were included in the bc-GenExMiner v5.0 webtool (http://bcgenex.ico.unicancer.fr). 

Conclusions The mesenchymal TNBC subtype is characterized by an exhausted and altered immune response, 

and resistance to immune checkpoint inhibitors. Consensus for molecular classification of TNBC subtyping and 

prediction of cancer treatment responses helps usher in the era of precision medicine for TNBC patients. 
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Introduction 
 

Triple-negative breast cancer (TNBC) is a heterogeneous disease which is immunohistochemically characterized 

by a lack of estrogen receptor (ER), progesterone receptor (PR) and a lack of human epidermal growth factor 

receptor 2 (HER2) overexpression. It accounts for 12 to 17% of primary BC and is the most aggressive BC subtype 

[1]. Biological heterogeneity and lack of tumor-specific drug targets and/or alternative therapeutic strategies 

represent the two main issues for precision treatment of TNBC patients. Improved subtype classification and 

identification of therapeutic pathways are therefore urgently needed to optimize patient care. In particular, 

immunotherapy and, more precisely, the use of immune checkpoint blockade (ICB), represents an important 

breakthrough in the treatment of TNBC [2]. However, one key problem for ICB resides in the identification of 

specific biomarkers for prediction of response to immune checkpoint (IC) inhibitors since PD-L1 expression, 

measured by immunohistochemistry (IHC), was reported as an imperfect ICB biomarker [3, 4]. Computational 

immuno-transcriptomics is a solution to address this problem [5]. 

Several studies have developed specific molecular classifications for TNBC based on gene expression profiles [6-

10]. To date, three to six numbers of transcriptome-based TNBC subtypes have been identified (Table S1). The 

differences in the numbers of TNBC subtypes arise for various reasons (Table S1) [11]. Additional omics 

approaches have also been used to subtype TNBC [12-16].  

Today, there is a clear consensus on three TNBC robust subtypes: luminal androgen receptor (LAR); basal-like 

immune-activated (BLIA); basal-like immune-suppressed (BLIS). There is open debate about the nature and 

robustness of other subtypes, notably mesenchymal-like (M), which is characterized by mesenchymal 

differentiation, high proliferation and cell motility, and mesenchymal stem-like (MSL or MES), which is 

characterized by mesenchymal features, stem-cell features, low proliferation and claudin-low gene expression, 

and high angiogenesis-related gene expression [17]. In 2016, Lehmann and colleagues revised their initial 

classifications, reducing them from six subtypes to four [18]. Immunomodulatory (IM) and MSL/MES subtypes 

were eliminated because of a high level of tumor-infiltrating immune and stromal cells, respectively. In the 

following years, two transcriptomic studies managed to identify M and MSL/MES, while three others failed to 

do so [11, 19-22]. Another important question concerns the type and level of immune response in these two 

mesenchymal subtypes compared to IM/BLIA, notably immune checkpoint expressions, because ICB is at stake 

[23-26]. Immune response is low in M with no observable expression of immune checkpoint [17, 18, 27, 28]. On 

the contrary, MSL/MES is characterized by a high immune response and expression of immune checkpoints, as 

is the case for BLIA [16, 17, 28, 29]. Furthermore, despite not being identified in Rody’s study, MSL/MES subtype 

with a high immune response is present [30]. Thus, high immune response is a true biological characteristic of 

MSL/MES.  

Here, our goal was to establish a consensus for molecular classification of TNBC. Then, we sought to predict 

responses to chemo- and targeted therapies, ICB and radiotherapy in each of these subtypes. To optimize this 

process, we harvested the largest possible amount of transcriptomic data from public repositories, measured 

by microarray and RNAseq. To our knowledge, this is the largest study aimed at subtyping TNBC; it exploits a 

total of 1942 samples.  

We concluded that TNBC are composed of four robust subtypes: LAR, BLIA, BLIS and MES. More importantly, 

we propose that this last subtype should be renamed to mesenchymal-like immune-altered (MLIA), as this term 

highlights its two main biological characteristics, i.e., mesenchymal-like features and an altered immune 

response. Despite immune activation, comparable to that of BLIA, ICB is probably less or not at all effective in 

MLIA, possibly caused by mesenchymal background and/or an enrichment in dysfunctional cytotoxic T 

lymphocytes (CTL). 

As an extension of this work, these results (TNBC cohorts and TNBC subtypes) were included in the bc-

GenExMiner database (http://bcgenex.ico.unicancer.fr) [31-33]. 

  

http://bcgenex.ico.unicancer.fr/


Accepted manuscript version   //   3 

 

Materials and Methods 
 

TNBC clinicopathological and transcriptomic data 

The selection of transcriptomic datasets was done according to the following inclusion criteria: tumor cells 

negative for ER, PR and without HER2 overexpression; female BC; invasive carcinomas; metastasis-free at 

diagnosis; fresh-frozen tumor; no neoadjuvant therapy before tumor collection; minimum number of patients 

per cohort n = 28. We looked for publicly available TNBC transcriptomic data sets in repositories and in articles 

complying with our inclusion criteria. All microarrays and RNAseq data met acceptable quality levels. Available 

clinicopathological data linked to these data were also harvested. 

 

Gene expression data pre-processing 

AffymetrixTM microarrays raw data were MAS5 normalized using AffymetrixTM expression console software 

version 1.3.1 using default settings, and then log2-transformed. Agilent microarrays raw data were loess 

normalized then log2 transformed sample/reference intensity ratios. When multiple probes were mapped to 

the same gene, the median value was calculated as the expression value of this gene. RNAseq data were 

acquired in raw counts or already in fragments per kilobase of transcript per million (FPKM). FPKM values were 

then log2-transformed with an offset of 0.1 to avoid undefined values. Genes with zero variance were excluded. 

For each cohort (microarray or RNAseq): 1) only genes shared across all studies were kept and 2) all datasets 

were merged into one by using the empirical Bayes algorithm (ComBat function) to remove batch effect. 

 

Unsupervised analysis 

Unsupervised k-means consensus clustering was performed to identify TNBC subtypes. The following 

parameters were used: 10 maximum clusters; 1000 iterations; and 0.8 subsampling fraction. Identification of 

the optimal number of genes was accomplished by selecting the most variable genes from 500 to 5000 in 

increments of 500, and evaluating the best clustering result using silhouette criterion. Finally, the optimal 

number of clusters was determined using the cumulative distribution function. 

 

Cluster functional annotation 

Clusters were annotated with: 1) clinicopathological characteristics; 2) gene ontology enrichment analyses 

(GOEA) based on biological process terms of 2-1) the 50 most contributing genes to the construction of the two 

principal components (PC1 and PC2), 2-2) differential gene expressions (DGE) between clusters and 2-3) 

discriminant clusters of highly expressed genes; 3) gene set enrichment analysis (GSEA) (see next section); 4) 73 

gene expression signatures (GES) for biological pathway exploration; 5) 47 IC mRNA expression (Table S2).  

Pathway enrichment analysis was performed using fgsea package with all genes ranked by T-test and the gene 

ontology biological process pathway database (R msigdbr package). Enriched pathways were then filtered by 

selecting the ones with a normalized enrichment score > 0 combined with an adjusted P < 0.001. Redundancy 

in filtered pathways was identify by semantic similarity (Wang distance method) using R rrvgo package, and the 

pathway number was reduced accordingly to reach a maximum of 20 pathways by increasing the similarity 

threshold (from 0.7 to 0.95 in increments of 0.1). 

 

Treatment prediction 

Prediction model and GES approaches were used to predict response to different cancer therapies: chemo- and 

targeted therapies, using R OncoPredict and its original version (R pRRophetic) packages (198 drugs screened) 

[34]; ICB using TIDE algorithm; radiotherapy, using four GES (Table S2). 
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Statistical analysis 

Quantitative variables were summarized using mean and standard deviation and were compared using 

Student’s t-test or one-way analysis of variance (ANOVA) with a Tukey post hoc test, as appropriate. Categorical 

variables were summarized using count and percentage and were compared using chi-square or Fisher’s exact 

test, as appropriate. Survival probability was estimated using the Kaplan–Meier method and compared between 

subtypes by Log-rank test. DGE analyses were performed using the R/Bioconductor limma package. Genes with 

|log2FC| ≥ 1.5 and adjusted P < 0.01 were considered significant. Highly expressed genes were represented on 

a heatmap, with patients ordered according to subtype. Hierarchical clustering was performed for genes and 

patients. Pearson’s correlation coefficient was used to calculate the correlation. GES scores, IC mRNA 

expressions and correlation matrix between GES were represented as heatmaps using hierarchical clustering 

with centered Pearson's correlation and average linkage methods. The Benjamini-Hochberg procedure was 

employed to correct for multiple testing. We considered a two-sided P of less than 0.05 to be statistically 

significant. 

 

bc-GenExMiner  

TNBC subtyping results were included in the bc-GenExMiner database. More details about its design, 

construction and coding can be found in previous articles [31-33]. 

 

Results 
 

TNBC transcriptomic and clinicopathological data 

A total of 1942 TNBC patient’s data were collected from 19 datasets, with 1243 samples from microarray 

technology (14 datasets including two internal cohorts, already published) and 699 from RNAseq technology 

(five datasets including one new internal cohort) (Table S3). Due to the merging of datasets issued from different 

platforms for both technologies, only common genes were kept with 14,514 genes for the microarray cohort 

and 15,614 for the RNAseq cohort. Clinicopathological data were also gathered when available (Table S3). 

Microarray- and RNAseq-based cohorts were investigated independently throughout the study. 

 

Unsupervised analysis confirmed four molecular subtypes 

Consensus k-means clustering separated TNBC microarray and RNAseq TNBC cohorts into four optimal clusters 

using the 2000th and 1500th most variable genes, respectively. After their biological characterization, clusters 

were named as follows (detailed in the next section): LAR, MLIA, BLIA and BLIS. Distributions of patients among 

the four clusters in the two cohorts were similar (P = 0.2303). Distributions were also similar between studies 

for the microarray cohort (P = 0.2479) and RNAseq cohort (P = 0.1775). Pooled data (n = 1942 patients) had the 

following distribution: 19.36% for LAR; 17.35% for MLIA; 31.06% for BLIA; 32.23% for BLIS, confirming that TNBC 

are largely, but not exclusively, basal-like (63.29%). 

 

Cluster functional annotation 

Clinicopathological characteristics  

Some significant clinicopathological differences exist between the four subtypes in both cohorts (Table 1). LAR 

patients are significantly older, have low-grade tumors, Nottingham prognostic index and Ki67. Furthermore, 

follow-up analyses show survival differences between the four subtypes: disease-free survival (DFS), P = 0.0019; 

distant metastasis-free survival (DMFS), P = 0.0136 (Fig. 1). MLIA and BLIS are associated with the best and the 

worst prognoses, respectively. In the RNAseq cohort, no survival differences were observed between the four 

subtypes: DFS, P = 0.7535; DMFS, P = 0.6232; overall survival (OS), P = 0.2804.  

The following biological characterization was performed by only keeping common results between the two 

cohorts to increase the robustness of the findings. 
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a. 
Variable  All 

n = 1243 (%) 
LAR 

n = 239 (%) 
MLIA 

n = 216 (%) 
BLIA 

n = 404 (%) 
BLIS 

n = 384 (%) 
p 

Age (years; mean ± sd)  53.9 ± 12.6 59.5 ± 12.3 52.1 ± 12.1 51.3 ± 11.5 54.2 ± 13.0 < 0.0001 
Nodal status Negative 460 (51.1) 87 (45.3) 67 (46.2) 146 (50.3) 160 (58.6) 0.0170 

Positive 440 (48.9) 105 (54.7) 78 (53.8) 144 (49.7) 113 (41.4)  
Tumour size (mm; mean ± sd)  26.0 ± 14.7 26.8 ± 14.9 21.8 ± 11.6 26.4 ± 16.9 27.1 ± 13.1 0.0367 
Histological types IDC 853 (96.5) 167 (89.8) 143 (96.6) 273 (99.3) 270 (98.2) < 0.0001 
 ILC 31 (3.5) 19 (10.2) 5 (3.4) 2 (0.7) 5 (1.8)  

SBR grade 1 15 (1.5) 7 (3.7) 3 (1.9) 2 (0.6) 3 (1.0) < 0.0001 
2 161 (17.0) 65 (34.2) 35 (22.2) 21 (6.8) 40 (13.8)  
3 773 (81.5) 118 (62.1) 120 (75.9) 287 (92.6) 248 (85.2)  

NPI 1 31 (4.8) 16 (12.7) 5 (4.9) 5 (2.4) 5 (2.4) 0.0020 
2 416 (64.2) 70 (55.6) 66 (64.7) 137 (64.3) 143 (69.1)  
3 201 (31.0) 40 (31.7) 31 (30.4) 71 (33.3) 59 (28.5)  

Ki67 < 20 54 (19.0) 23 (40.4) 10 (21.7) 5 (5.4) 16 (18.0) < 0.0001 
 ≥ 20 230 (81.0) 34 (59.6) 36 (78.3) 87 (94.6) 73 (82.0)  
P53 status (IHC) No 42 (36.8) 18 (64.3) 6 (31.6) 12 (30.0) 6 (22.2) 0.0057 
 Yes 72 (63.2) 10 (35.7) 13 (68.4) 28 (70.0) 21 (77.8)  
TP53 status (seq)  No 56 (20.3) 18 (32.1) 15 (41.7) 8 (8.2) 15 (17.2) < 0.0001 
 Yes 220 (79.7) 38 (67.9) 21 (58.3) 89 (91.8) 72 (82.8)  
TILs ≤ 20  69 (80.2) 15 (88.2) 7 (53.8) 16 (64.0) 31 (100.0) 0.0001 
 > 20 17 (19.8) 2 (11.8) 6 (46.2) 9 (36.0) 0 (0.0)  
BRCA1 No 296 (89.7) 58 (96.7) 42 (87.5) 102 (87.9) 94 (88.7) 0.2207 
 Yes 34 (10.3) 2 (3.3) 6 (12.5) 14 (12.1) 12 (11.3)  

BRCA2 No 320 (97.3) 57 (95.0) 46 (97.9) 114 (98.3) 103 (97.2) 0.6209 
 Yes 9 (2.7) 3 (5.0) 1 (2.1) 2 (1.7) 3 (2.8)  
BRCA1/2 No 287 (87.0) 55 (91.7) 41 (85.4) 100 (86.2) 91 (85.8) 0.6945 
 Yes 43 (13.0) 5 (8.3) 7 (14.6) 16 (13.8) 15 (14.2)  
Chemotherapy No 133 (24.7) 32 (30.2) 20 (25.6) 35 (19.1) 46 (26.7) 0.1576 

Yes 406 (75.3) 74 (69.8) 58 (74.4) 148 (80.9) 126 (73.3)  
Hormone therapy No 459 (85.5) 91 (85.8) 65 (82.3) 151 (83.4) 152 (88.9) 0.4105 

Yes 78 (14.5) 15 (14.2) 14 (17.7) 30 (16.6) 19 (11.1)  
Radiotherapy No 87 (17.0) 19 (18.6) 14 (19.2) 26 (15.2) 28 (17.0) 0.8431 
 Yes 424 (83.0) 83 (81.4) 59 (80.8) 145 (84.8) 137 (83.0)  
Metastasis No 603 (71.3) 118 (69.8) 110 (79.7) 201 (73.4) 174 (65.7) 0.0220 
 Yes 243 (28.7) 51 (30.2) 28 (20.3) 73 (26.6) 91 (34.3)  
Race Asian 198 (25.0) 44 (27.0) 34 (23.6) 56 (23.0) 64 (26.6) 0.7295 
 Caucasian 593 (75.0) 119 (73.0) 110 (76.4) 187 (77.0) 177 (73.4)  

 

b. 
Variable  All 

n = 699 (%) 
LAR 

n = 137 (%) 
MLIA 

n = 121 (%) 
BLIA 

n = 199 (%) 
BLIS 

n = 242 (%) 
p  

Age (years; mean ± sd)  55.8 ± 13.5 63.5 ± 11.3 54.3 ± 11.7 53.2 ± 13.7 54.3 ± 13.8 < 0.0001 
Nodal status Negative 385 (61.6) 55 (44.0) 63 (58.9) 107 (60.8) 160 (73.7) < 0.0001 

Positive 240 (38.4) 70 (56.0) 44 (41.1) 69 (39.2) 57 (26.3)  
Tumor size (mm; mean ± sd)  25.4 ± 12.9 26.9 ± 14. 9 23.0 ± 9.6 28.5 ± 15.3 23.3 ± 10.1 0.0005 
Histological types IDC 449 (98.0) 95 (95.0) 84 (98.8) 122 (99.2) 148 (98.7) 0.1510 
 ILC 9 (2.0) 5 (5.0) 1 (1.2) 1 (0.8) 2 (1.3)  
SBR grade 1 4 (0.7) 1 (0.9) 1 (1.1) 0 (0.0) 2 (1.0) < 0.0001 

2 98 (17.9) 47 (44.4) 24 (24.7) 4 (2.7) 23 (11.8)  
3 445 (81.4) 58 (54.7) 72 (74.2) 145 (97.3) 170 (87.2)  

NPI 1 33 (6.9) 14 (14.6) 6 (7.2) 2 (1.6) 11 (6.4) 0.0002 
2 290 (60.7) 50 (52.1) 53 (63.9) 69 (54.3) 118 (68.6)  
3 155 (32.4) 32 (33.3) 24 (28.9) 56 (44.1) 43 (25)  

Ki67 < 20 51 (9.2) 29 (26.1) 7 (6.9) 7 (4.6) 8 (4.2) < 0.0001 
 ≥ 20 505 (90.8) 82 (73.9) 95 (93.1) 146 (95.4) 182 (95.8)  
TP53 status (seq)  No 22 (25.6) 2 (20.0) 7 (43.8) 5 (16.1) 8 (27.6) 0.2365 
 Yes 64 (74.4) 8 (80.0) 9 (56.2) 26 (83.9) 21 (72.4)  
TILs ≤ 20 68 (65.4) 12 (70.6) 8 (61.5) 21 (55.3) 27 (75.0) 0.3165 
 > 20 36 (34.6) 5 (29.4) 5 (38.5) 17 (44.7) 9 (25.0)  
BRCA1 No 277 (89.6) 55 (100.0) 45 (88.2) 81 (86.2) 96 (88.1) 0.0465 
 Yes 32 (10.4) 0 (0.0) 6 (11.8) 13 (13.8) 13 (11.9)  
BRCA2 No 298 (96.8) 54 (98.2) 51 (100.0) 91 (98.9) 102 (92.7) 0.0436 
 Yes 10 (3.2) 1 (1.8) 0 (0.0) 1 (1.1) 8 (7.3)  
BRCA1/2 No 269 (86.8) 54 (98.2) 45 (88.2) 80 (85.1) 90 (81.8) 0.0305 
 Yes 41 (13.2) 1 (1.8) 6 (11.8) 14 (14.9) 20 (18.2)  
Chemotherapy No 77 (12.5) 21 (16.9) 8 (7.5) 18 (10.5) 30 (14.1) 0.1250 

Yes 538 (87.5) 103 (83.1) 98 (92.5) 154 (89.5) 183 (85.9)  
Hormone therapy No 265 (96.7) 38 (92.7) 40 (95.2) 85 (95.5) 102 (100.0) 0.0324 

Yes 9 (3.3) 3 (7.3) 2 (4.8) 4 (4.5) 0 (0.0)  
Radiotherapy No 298 (62.2) 65 (62.5) 58 (67.4) 63 (48.1) 112 (70.9) 0.0007 
 Yes 181 (37.8) 39 (37.5) 28 (32.6) 68 (51.9) 46 (29.1)  
Metastasis No 129 (95.6) 18 (90.0) 20 (95.2) 46 (95.8) 45 (97.8) 0.5044 
 Yes 6 (4.4) 2 (10.0) 1 (4.8) 2 (4.2) 1 (2.2)  
Race Asian 366 (52.5) 89 (65.0) 68 (56.2) 90 (45.7) 119 (49.2) 0.0019 
 Caucasian 307 (44.0) 48 (35.0) 48 (39.7) 96 (48.7) 115 (47.5)  
 Others 24 (3.5) 0 (0.0) 5 (4.1) 11 (5.6) 8 (3.3)  

 

Table 1. Clinicopathological characteristics of TNBC in function of cluster assignment. a microarray cohort. b RNAseq 

cohort (IDC: invasive ductal carcinoma; IHC: immunohistochemistry; ILC: invasive lobular carcinoma; NPI: Nottingham 

prognostic index; seq: sequence-based; TILs: tumor infiltrating lymphocytes) 
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Figure 1. Kaplan-Meier survival curves for microarray TNBC cohort. a DFS. b DMFS. c OS. 

 

Pathway enrichment analysis 

We performed principal component analysis (PCA) on the two cohorts to identify genes explaining variation 

across subtypes. PCA separates the four clusters according to three biological characteristics: androgen receptor 

pathway (ARP), which is inversely correlated to migration and invasion, for PC1, and immune response, for PC2 

(Fig. 2; Table S4).  

To improve the completeness and robustness of pathway annotation, two pathway enrichment analysis 

methods (overrepresentation-based [LIMMA and heatmap of highly expressed gene results as inputs] and 

ranking-based methods [GSEA]) were used to characterize molecular pathways associated with each subtype. 

In summary, LAR is characterized by ARP activation, lipid metabolic process, organic acid metabolic process and 

response to xenobiotic stimulus; MLIA is characterized by immune response, ARP activation, lipid metabolic 

process, angiogenesis and claudin-low; BLIA is characterized by immune response and mitotic cell cycle, and 

BLIS is characterized by mitotic cell cycle, extracellular matrix organization, intermediate filament organization, 

epithelium development, tissue morphogenesis and neurogenesis (Fig. 3; Table S5). 

 

 
Figure 2. Principal component analyses. Projection of the patients on the first plan. a TNBC microarray cohort (n = 1243). 
b TNBC RNAseq cohort (n = 699). Associated pathways were defined by enrichment analyses using ToppGene suite with 
enrichment gene sets composed of the top-50 contributing genes from first (PC1) and second (PC2) principal components 
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Figure 3. Gene set enrichment analysis (GSEA). GSEA analysis was performed on t-test ranked genes using fgsea package. 
Resulting pathways were first filtered by selecting pathways with normalized enrichment scores (NES) > 0 and P < 0.001, then a 
second filtration using semantic similarity was performed to decrease redundancy in pathways and reach 20 pathways maximum 
for each subtype. a TNBC microarray cohort (n = 1243). b TNBC RNAseq cohort (n = 699). 

 
 
 
 

a. b. 
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Gene expression signature scores and immune checkpoint mRNA expressions for the four TNBC subtypes 

To explore the two cohorts by integrating prior knowledge on BC, we characterized them further using 73 GES 

as well as 47 immune checkpoint mRNAs. Six clusters of correlation based on GES scoring for microarray and 

RNAseq TNBC cohorts highlight important biological features of TNBC: basal-like, claudin-low, immune-

suppression, immune-activation, mesenchymal stem-like and luminal, which are more or less pronounced in 

each subtype (Figure S2). 

Subsequently, we will only discuss the results obtained for MLIA functional annotation. The results obtained for 

the other subtypes are presented in Fig. 4, Fig. 5, Table S6 and Table S7. 

 

Mesenchymal-like immune-altered  

The lowest scores for the three claudin-low GES are observed among MLIA, suggesting that this subtype is 

enriched in claudin-low tumors (Fig. 4; Fig. 5; Table S6). Fourteen immune response GES scores and 26 out of 

41 immune checkpoint mRNA expressions, including CD274 (PD-L1) and PDCD1 (PD1), show that MLIA immune 

response is higher compared to the two non-immune-activated subtypes, i.e., LAR and BLIS. Six, sixteen and 

four immune checkpoints display “MLIA > BLIA”, “BLIA > MLIA” and “MLIA = BLIA” profiles, respectively. At first, 

these results highlight immune activation and the presence of exhausted T cells in this subtype comparable to 

that of BLIA. Indeed, co-expression of multiple immune inhibitory receptors is considered a cardinal feature of 

T cell exhaustion [35, 36]. However, and importantly, a crucial difference is pointed out between the two 

immune-activated subtypes, i.e., MLIA and BLIA. CTL dysfunction GES scores are higher in MLIA than in BLIA, 

meaning that MLIA is enriched in dysfunctional CTL compared to BLIA. For this very reason, we have chosen the 

term "altered” to describe the immune response of this subtype. 

Four out of the five metabolism GES: glycolysis, iron regulatory gene signature, MITO/OXPHOS and pentose 

phosphate pathway, show the lowest scores for MLIA, which means that this subtype is less aggressive than the 

others [37-39]. In addition, MLIA displayed the highest scores for adipocyte GES, which is consistent with 

Burstein’s results [29].  

CD44+/CD24-/low, mesenchymal stem cell and stem-like GES scores are high for MLIA. Indeed, CD44+/CD24-

/low cells are considered as tumor-initiating cells and are encountered in claudin-low and mesenchymal tumors, 

here MLIA [40-43]. Reinforcing this result, ALDH1A1 mRNA, which is a marker of stem cells and tumor initiating 

cells, is highly expressed in MLIA compared to the other subtypes (Figure S3) [44]. Eight critical biological 

pathways in cancer GES display the highest scores for MLIA compared to the other subtypes: angiogenesis, 

epithelial-mesenchymal transition (EMT)-associated, growth factors, Hox genes, lymphangiogenesis, pSTAT3, 

TGFβ and Wnt/β-catenin signaling. Furthermore, proliferation GES scores are lower in this subtype compared 

to the two basal-like subtypes. The majority of these results demonstrate the mesenchymal and stemness 

nature of this low-proliferative subtype [17, 28, 36, 40, 45-47]. Moreover, MLIA is characterized by low AKT and 

MYC GES scores. Hence, targeted inhibitors should not be prescribed for this subtype. And finally, prognostic 

GES scores in MLIA are low compared to basal-like subtypes. Note that some commonalities exist between MLIA 

and LAR (e.g., ARP activation), and MLIA and BLIA (e.g., immune activation, including high T-cells and IC mRNA 

levels) Fig. 5.  

In conclusion, MLIA is mainly characterized by EMT, stemness, altered immune response and claudin-low 

features [43, 48]. Survival analyses show that this subtype is less aggressive compared to the other three (Fig. 

1). Concerning MLIA, it is important to underline that immune response, comparable to that of BLIA, is 

insufficiently highlighted in the literature [22, 29, 40]. The main difference between the two immune-activated 

subtypes is the enrichment of dysfunctional CTL in MLIA compared to BLIA. 
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Figure 4 (2 previous pages): Cluster functional annotation. Patients and their clinicopathological characteristics were hierarchically 
clustered within each subtype according to GES scores combined with immune checkpoint gene expressions. GES variables were 
clustered within each biological category (left row annotation). For continuous variables, subtype pairwise comparison was 
performed based on subtype mean value (Tukey post hoc test) and results were summarized and annotated on the heatmap 
accordingly. a TNBC microarray cohort (n = 1243). b TNBC RNAseq cohort (n = 699). 

 
Figure 5. Overview of the clinicopathological and biological characteristics of the four TNBC subtypes. The inner pie chart 
represents specific results for LAR, MLIA, BLIA and BLIS, and the outer circular segments represents commonalities between two 
subtypes: LAR and MLIA (blue and orange dashed border); MLIA and BLIA (orange and green dashed border); BLIA and BLIS (green 
and red dashed border); BLIS and LAR (red and blue dashed border). In each circular segments, from outside to inside, 
clinicopathological characteristics, pathway enrichment analyses, and GES scores and IC mRNA levels results are shown (green: 
low; red: high). Only common results between microarray and RNAseq cohorts have been reported. 

 

Treatment prediction 

To estimate the difference in drug sensitivity among TNBC subtypes, an in silico pharmacological screening was 

performed using Oncopredict and pRRophetic packages, which predict the half-maximal concentration (IC50) 

for ~200 pharmacological inhibitors from the Genomics of Drug Sensitivity in Cancer database, based on 

transcriptomic data. Chemo- and targeted therapy resistance and sensitivity for each subtype were defined by 

an IC50 strictly superior or inferior to the three other subtypes, respectively, with concordant results between 

microarray and RNAseq data (Fig. 6). 

SBR 3

LAR MLIA

BLIABLIS
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MLIA seems to be sensitive to drugs targeting RTK signaling pathways (n = 5), i.e., RAS/ERK/MAPK and others 

(Fig. 6). On the other hand, it is resistant to drugs targeting six pathways, e.g., EGFR signaling, ERBB signaling 

and PI3K/Akt/mTOR signaling. It is worth noting that ABCB1 mRNA, which codes for multidrug resistance protein 

1 (MDR1/P-gp), is highly and innately overexpressed in MLIA (Figure S4). This could be due to its enrichment in 

stem cells [49]. Concerning radiotherapy, MLIA appears to be one of the most radioresistant subtypes, as shown 

by high radiation sensitivity signature scores. As highlighted in the literature, chemo- and radioresistance may 

be related to cancer stem cell and mesenchymal features that define this subtype (Fig. 4; Table S6) [50]. 

Importantly, and despite immune activation, MLIA is above all characterized by dysfunctional CTL and a high 

TIDE score, meaning that ICB is probably less or not effective. However, this result needs to be confirmed. In 

this regard, there are not many ways to accurately estimate ICB response. Of the few available, the TIDE 

algorithm seems to perform well. In melanoma, mesenchymal phenotype, a hallmark of MLIA, is associated with 

innate anti-PD-1 resistance [51]. Additionally, the mesenchymal nature of this TNBC subtype could explain the 

prediction of low ICB response rates, together with chemo- and radioresistance. Overall, mesenchymal and 

stemness natures of MLIA reduce the chances of different treatment success. 

The LAR subtype displays the most resistant profile to the panel of drugs screened (57 out of 198). Out of the 

different GOEA biological processes characterizing LAR, “response to xenobiotic stimulus” (GO:0009410) could 

explain this finding (Table S5). Indeed, eight out of the 10 selected genes involved in this pathway, highly 

expressed in LAR, were clearly linked to drug resistance in cancer (Table S7). These genes testify to the complex 

and multifactorial nature of drug-resistance mechanisms in LAR, such as increased drug metabolism (AKR genes, 

CYP genes), changes in drug efflux pumps (ABC genes) and elimination of cellular stress (AKR genes) [52]. In this 

study, the IC50 was the highest in LAR subtype for doxorubicin, epirubicin, docetaxel, paclitaxel and tamoxifen, 

which are commonly used in BC treatment (Fig. 6; Table S7). On the other hand, this subtype seems to be 

particularly sensitive to drugs targeting the PI3K/Akt/mTOR signaling pathway (n = 15).  

 

Availability of TNBC subtyping analysis on bc-GenExMiner 

Transcriptomic data and their corresponding clinicopathological features of new TNBC cohorts were included in 

the bc-GenExMiner v5.0 database. TNBC molecular subtype assignment was done as described in the present 

study. As an example of practical application, four overexpressed genes between TNBC subtypes, identified by 

Burstein et al, were tested: DHRS2 for LAR, OGN for MLIA (MES), IDO1 for BLIA and ELF5 for BLIS [29]. The bc-

GenExMiner v5.0 analyses confirmed the subtype specificity of these genes regardless of the nature of RNA 

measurement data (Figure S5). 

 

Discussion 

In this large cohort study, we identified four robust TNBC subtypes using unsupervised k-means consensus 

clustering analysis based on gene expression profiles: LAR, MLIA, BLIA and BLIS. We believe this molecular 

subtyping is robust for the following reasons: 1) it is based on a very large analysis, exploiting 1942 TNBC 

samples; 2) two types of transcriptomic data (i.e., microarrays [n = 1243] and RNAseq [n = 699]) were 

independently analyzed, 3) subtype annotation was assigned based on extensive gene enrichment analysis and 

4) concordance with some previous research. Indeed, like ours, three studies clearly identified these four 

subtypes [29, 40, 53]. In addition, in Rody's study, although three TNBC subtypes were identified, it is worth 

noting that apocrine cluster is clearly divided into two subclusters, LAR and MLIA [30]. This supplementary 

subtype division is mainly based on immune response.  

“Mesenchymal-like immune-altered” is a more accurate description of the fourth TNBC robust subtype, initially 

named mesenchymal stem-like and abbreviated as MSL/MES [17, 29]. In this way, the specific histological 

background, mesenchymal, and an important feature of the immune response, immune alteration, are 

highlighted.  
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Figure 6: Prediction of treatment outcomes in TNBC subtypes. The four subtypes were compared according to treatment 
sensibility scores (detailed in a, b and c). Subtype pairwise comparison was performed using a Tukey post hoc test, where 
a P value threshold of 0.05 was used to define the equality or difference between subtype mean values. a Chemo- and 
targeted therapies response scores are predicted IC50, which were estimated using OncoPredict and pRRophetic 
packages. Treatments are classified according to their main biological target(s) (left row annotation). b Immune 
checkpoint blockade response was scored based on tumor immune dysfunction and exclusion (TIDE) algorithm. c 
Radiotherapy response scores were calculated using two gene expression signatures (see reference in Table S2) (**: 
various biological targets; °°: present in pRRophetic package). 

 

At first glance, immune response spectra between MLIA and BLIA seem to be similar despite being found in 

different histological and biological backgrounds, notably marked EMT features in MLIA. Of note, mesenchymal 

trait is associated with tumor immune escape [47]. One important finding of the study, which needs validation, 

is the difference in terms of CTL functionality between MLIA and BLIA. Dysfunctional CTL state may result from 

the activation of the TGFβ pathway, one of the main EMT drivers [36, 47]. In addition, CTL dysfunction in MLIA 

is associated with low ICB response prediction. Further studies are needed to explore if a causal link can be 

established between these two facts. 

Robust TNBC molecular subtypes open up avenues for precision medicine because they are characterized by 

many drug targetable biological pathways. A wealth of articles have been written about this subject in recent 

years [7, 54, 55]. Here, we have focused on the MLIA subtype. As shown in our work, TNBC is a molecularly 

diverse disease, and its heterogeneity has likely limited the success of targeted therapies in unselected patients 

to date. Beside the recent approval of immune checkpoint inhibitors, chemotherapy and new generation of 

chemotherapy (i.e., antibody drug conjugated) remain the backbone of treatment. MLIA subtype harbors very 

distinct features, which could pave the way for dedicated treatment. 

As previously discussed, despite high expression of immune checkpoint mRNAs, MLIA does not appear to be 

amenable to ICB as a first-line treatment. On the contrary, BLIA subtype is a promising candidate for such 

treatment.  

A wide range of drugs targeting angiogenesis are being developed and approved for different tumor types. This 

pathway represents an important target for MLIA. Anti-angiogenic therapies have been developed in TNBC with 

mixed results. Bevacizumab has been widely tested in advanced and early TNBC and has been approved in the 

metastatic setting based on the E2100 study, showing a 5.5-month progression-free survival benefit [56]. 

However, given subsequent negative results, the Food and Drug Administration has withdrawn the approval 

contrary to the European Medicines Agency [57]. We hypothesize that selecting MLIA tumors could enhance 

the probability of demonstrating a clinical benefit compared to standard treatment. 

EMT and MSL characteristics are particular features of MLIA compared to other subtypes. EMT is known to play 

an important role in cancer progression, metastasis, and resistance to chemotherapy and radiotherapy [47]. 

Preventing EMT by blocking the upstream extracellular signals and their signal transduction pathways is one of 

the strategies targeting EMT. In this context, the TGFβ pathway represents an interesting target given its high 

activation in MLIA and the fact that it attenuates tumor response to PD-L1 inhibitors [58]. Several TGFβ kinase 

inhibitors are in development. In a previous study, Galunisertib increased pathological complete response 

combined with neaoadjuvant chemotherapy in rectal cancer, and hence could be tested in MLIA [59]. Bintrafusp 

alfa is a bifunctional protein composed of the extracellular domain of the TGFβ RII receptor (a TGFβ “trap”) 

fused to a humanized anti-PD-L1 IgG1 single-domain antibody. A phase II multicenter study of bintrafusp alfa is 

ongoing as a monotherapy in HMGA2-expressing TNBC (NCT04489940). Here too, TGFβ inhibition combined 

with immune checkpoint inhibitors could represent an interesting therapeutic strategy [60]. Additionally, the 

Wnt signaling pathway, involved in EMT is highly activated in MLIA. Several Wnt and β-catenin inhibitors are in 

development [61]. ST316 can selectively target the Wnt/β-catenin signaling pathway and is currently evaluated 

in a phase I-II study with an expansion cohort in TNBC (NCT05848739). Finally, targeted regulation of epigenetics 

is a reversible and stable way of inducing the reprogramming required for phenotypic switching in the EMT 

process. Numerous epidrugs are currently in development and may be tested in MLIA. 
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STAT3, whose activation is linked to many cancer processes, could also represent an interesting target in MLIA 

tumors. Indeed, many STAT3 inhibitors have been developed and demonstrate anticancer activities both in vitro 

and in vivo TNBC models [62]. 

Today, through the identification of molecular heterogeneity of TNBC, it may be possible to understand part of 

the limited efficacy of therapies in unsubtyped TNBC patients. It is therefore of fundamental importance to 

subtype their tumors to improve their medical care. A recent and promising phase II clinical trial (FUTURE), 

which includes heavily pretreated metastatic TNBC, demonstrates that this approach is fruitful [63]. This 

pioneering study is encouraging because it demonstrates the validity and promise of a precision medicine 

approach for heavily pretreated metastatic TNBC. 

Today there is no doubt that the era of precision medicine for TNBC patients has begun, and robust and 

consensual molecular subtyping of TNBC is a prerequisite for its success [64].  
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